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Abstract – Some inverse boundary values problems deal with the estimation of boundary conditions on incompletely 
prescribed boundaries.  The boundary values on incompletely prescribed boundaries can be estimated when excessively 
prescribed boundaries are introduced.  Inside observations may be used together with the boundary observations for 
estimating the unknown boundary values.  In this paper the inside displacement observations are used together with 
boundary observations to estimate the unknown boundary conditions for an elastostatic body.  By applying the boundary 
element equations, these observations were incorporated in a matrix equation for unknown boundary values.  The 
unknown boundary values may be estimated by solving the matrix equation.  The matrix equation is ill-conditioned due to 
the ill-posed nature of the problem, and regularization is necessary to obtain a good solution.  An alternating boundary 
element inverse analysis scheme is developed for the estimation from the boundary and inside observations.  As the 
regularization parameter, the stopping number of iterations is employed.  Its reasonable estimation is made by using the 
discrepancy principle applied in observations or in observation equations.  It is found that the iterative boundary element 
inverse analysis scheme is useful for the estimation of boundary values from the inside and boundary observations.   
 
1. INTRODUCTION 
There are various kinds of inverse boundary value problems in science and engineering [1].  Inverse boundary values 
problems deal with the estimation of boundary conditions on incompletely prescribed boundaries, where boundary 
conditions are incompletely prescribed [1-17].  The boundary values on incompletely prescribed boundaries can be 
estimated, when excessively prescribed boundaries are introduced [8, 12, 15].  By applying the boundary-element method 
[18, 19] the inverse boundary value problem is reduced to the solution of a matrix equation.  The matrix equation can be 
solved for unknown boundary values.   

For two-dimensional elastostatic problems, measurements concerning displacement and strains can be made at points 
inside the body.  These observations may be used for estimating the unknown boundary values.  By applying the 
boundary element equations, these measurements can be used for constructing matrix equations for unknown boundary 
values.  In this case again the unknown boundary values may be estimated by solving the matrix equation.   

The matrix equation is severely ill-conditioned because of the ill-posed nature of the problem.  When inverse analysis 
scheme without regularization is applied, errors included in values of the excessively prescribed boundaries are magnified 
tremendously in the estimated boundary values.  Regularization is therefore necessary to obtain a good or reasonable 
solution of this matrix equation for the estimated boundary values.  The present authors applied the singular value 
decomposition with rank reduction to solve the ill-posed matrix [17].  The rank was estimated reasonably with the 
discrepancy principle [20].  The alternating boundary element inverse analysis scheme was proposed by Kolzov et al. [7].  
They discussed the convergence of solution obtained by using the scheme.  Lesnic et al. [9, 10, 13] and Kubo and 
Furukawa [14] examined the applicability of the scheme to the identification of boundary values for the Laplace field.  
Kubo et al. [16] applied the method to the estimation of boundary values from noisy observations.  In their study the 
number of iterations at truncation was regarded as a regularization parameter and was estimated by using the discrepancy 
principle [20].  

In the present paper the alternating boundary element inversion analysis scheme is developed for estimating unknown 
boundary values from inside observations together with boundary observations on over-prescribed boundary values.  
Numerical simulations are made to examine the applicability of the scheme.  Selection of regularization parameter, i.e. the 
stopping number of iterations, is discussed.   
 
2. BASIC EQUATIONS FOR SOLVING INVERSE BOUNDARY VALUE PROBLEM WITH INSIDE AND 
BOUNDARY OBSERVATIONS 
In direct problems, boundary value is prescribed at every point of boundary of a body.  The inverse boundary value 
problem involves incompletely prescribed boundary, where no information concerning the boundary values is available in 
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advance.  For the estimation of the incompletely prescribed boundary, excessively prescribed boundaries are introduced [2, 
8, 11, 15].   
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Figure 1: Boundary conditions for elasto
 
 

Consider an inverse boundary value problem of elastost
elastostatics, the boundary integral equation is obtained by integ
solutions uij*, tij* [18, 19].  The displacement at point P inside
Γ = Γ0+Γ1+Γ2+Γ3 of the domain as  

)()()P,()P( *
�Γ Γ= xdxtxuu iijj

As the fundamental solutions uij*, tij*, Kelvin’s solutions we
boundary point Q, eqn. (1) is reduced to the following equatio

)()Q,(p.v.)Q( *
�Γ= xtxuuc iijjj

Here, “p.v.” designates the principal value of the integral and cj
By discretizing the boundary into boundary elements and app
eqn (2) is reduced to the following matrix equation, which i
points and vector {t} consisting of nodal displacements:  

        [H]{u} = [G]{t}.  
   For a direct elastostatic problem, boundary conditions conc
xi at every point of boundary Γ.  Then half of the boundary
advance.  The rest of the boundary values are unknown and
values.  By moving unknown boundary values in eqn. (3) to t
right side, a matrix equation for the unknown boundary values

         [A]{x} = [B]{b}  
where {x} is unknown boundary value vector and {b} is presc
case is square and eqn. (4) can be solved without difficulties.  

Inverse boundary value problems involve incompletely
prescribed.  When both the traction and the displacement ar
prescribed boundary values may be estimated.  In this case eq
in the foregoing papers [2, 8, 11, 15].  In this case, however
Matrix [A] is singular or nearly singular due to the ill-posed na

When inside observations of displacements are made, we
When inside observations of strains instead of displacements
differentiating eqn. (1).   
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atics shown in Figure 1.  For boundary value problem of 
rating the Navier’s equations multiplied by the fundamental 
 the domain can be expressed as an integral along boundary 

.)()()P,(*
�Γ Γ− xdxuxt iij                       (1) 

re used in this study.  When the point P is moved to the 
n:  

.)()()Q,()( *
�Γ Γ−Γ xdxuxtxd iij                 (2) 

 is a coefficient dependent on the geometry near the point Q.  
lying the boundary-element method, the boundary integral 

nterrelates vector {u} consisting of displacements at nodal 

                                            (3) 
erning displacement or traction are given for each direction 
 displacements and tractions at nodal points are known in 
 can be computed using eqn. (3) from prescribed boundary 
he left side and prescribed boundary values in eqn. (3) to the 
 is obtained: 
                                            (4) 
ribed boundary value vector.  Matrix [A] in eqn. (4) for this 
 
 prescribed boundary, where no boundary conditions are 
e prescribed on some parts of boundary, the incompletely 
n. (3) can also be used to construct eqn. (4), which was used 
, there is no guarantee that matrix [A] in eqn. (4) is square.  
ture of the inverse problem.   
 can use eqn. (1) which involves unknown boundary values.  
 are made, we can use the following equation deduced by 



�� ΓΓ
Γ−Γ= )()()A,()()()A,()A( *

,
*

,, xdxuxtxdxtxuu ikijikijkj                    (5) 

Here “,k” denotes differentiation with xk.  Eqns (1) and (5) are reduced to the following system of equations for the 
unknown boundary values.   

        {c}+[h]{u} = [g]{t}                                         (6) 
Here {c} denotes a vector consisting of measured displacements and strains.  Then eqns (4) and (6) give the following 
equation with {d} denoting a vector calculated from prescribed boundary values and measured inside displacements and 
strains {c} and matrices [H], [G], [h] and [g].   

         [A]{x} = {d}                                             (7) 
This equation may be solved for the unknown boundary values.   

When observations are made at a finite number of points, the uniqueness of the continuous problem does not hold.  
The discretization of the problem can recover the uniqueness, but stability of the solution is not assured and then the 
regularization is necessary for obtaining a reasonable solution.  In the present discretized problem, matrix [A] is singular or 
nearly singular, and eqn. (7) does not give an approximate solution without regularization. 
  
3. ALTERNATING BOUNDARY ELEMENT INVERSE ANALYSIS SCHEME MODIFIED FOR BOUNDARY 
VALUE ESTIMATION FROM INSIDE AND BOUNDARY OBSERVATIONS   
As an inverse analysis scheme with regularization, the alternating boundary element inverse analysis scheme [7] was 
proposed for inverse boundary value problems where the boundary values are estimated from over-prescribed boundary 
values.  In this section the method is modified for the case where the inside observations can be used together with the 
over-prescribed boundary values.   

As an example consider an inverse elastostatics boundary value problem for a rectangular region of aspect ratio h 
shown in Figure 2 is considered.  The boundary AD is regarded as the incompletely-prescribed boundary, where neither 
the displacements nor the tractions are prescribed.  A part of boundary BC is taken as the over-prescribed boundary, while 
ordinary boundary conditions are prescribed on the rest part of the boundary BC.  The inside points for measurement are 
placed on the line of EF.   

The alternating boundary element inversion scheme consists of the following steps. 
[Step 1]  On the over-prescribed boundary the Dirichlet type displacement boundary condition is employed.  Give an 

initial guess of the Neumann type traction boundary condition on the incompletely-prescribed boundary.  On the rest 
of whole boundary the prescribed boundary condition is used.  Inside observations are given on inside observation 
points.  Solve boundary element eqns (4) and (6) simultaneously for unknown boundary values.  

[Step 2]  On the over-prescribed boundary the Neumann-type traction boundary condition is used.  On the 
incompletely-prescribed boundary the Dirichlet-type displacement boundary condition obtained in the preceding step 
is used.  On the rest of whole boundary the prescribed boundary condition is used.  Inside observations are given on 
inside observation points.  Solve boundary element eqns (4) and (6) simultaneously for unknown boundary values.    
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Figure 2: Boundary

 
[Step 3]  On the over-prescribed bo

incompletely-prescribed boundary
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 conditions for an inverse elastostatic boundary value problem. 

undary the Dirichlet-type displacement boundary condition is used.  On the 
 the Neumann-type traction boundary condition obtained in the preceding step is 



used.  On the rest of whole boundary the prescribed boundary condition is used.  Inside observations are given on 
inside observation points.  Solve boundary element eqns (4) and (6) simultaneously for unknown boundary values.      

[Step 4]  Iterate the boundary element analyses as in Steps 2 and 3.  
 
4. SELECTION OF NUMBER OF ITERATIONS AS A REGURARIZATION PARAMAETER 
When the alternating inverse boundary element method is applied, the stopping number of iterations can be taken as a 
regularization parameter, as was discussed in [16].  The discrepancy principle [20] can be applied to determine the 
stopping number of iterations.  In the conventional discrepancy principle [20] the discrepancy is evaluated between the 
given response and that corresponding to the solution.  The regularization parameter, which gives a discrepancy of the 
observation noise level, is taken as an appropriate one.   
   The present authors proposed a discrepancy principle, which evaluates the discrepancy in the observation equations 
[15].  In this study observation equations are given by eqns (4) and (6). 
 
5. PROCEDURE OF NUMERICAL SIMULATIONS 
A rectangular region of the aspect ratio h shown in Figure 2 is considered.  Boundary AD is regarded as the 
incompletely-prescribed boundary.  Partial boundary of BC was taken as the over-prescribed boundary.  The inside 
points for measurement are placed on the line of y = hin.  In the numerical simulations h = 0.5 and hin = 0.4 were used.  In 
the boundary element discretization, the number of boundary elements n was taken to be 10 for each of the top boundary 
AD, the bottom boundary BC, and the side boundaries AB and CD.  The total number of inside observations nin and the 
number over-prescribed boundary values nover is taken to agree with the number of nodes on the incompletely-prescribed 
boundary. 

To generate the over-prescribed boundary values on BC, direct pre-analyses were made using the boundary element 
method for the case that Hertzian type contact stress distribution is applied on AD.   In the direct pre-analysis traction tx  
(= σ x) and ty (= τ xy) are prescribed to be 0 and other boundary values are unknown on AB and CD, while on boundary BC 
displacement uy and traction tx (= τ xy) are prescribed to be 0 and other boundary values are taken to be unknown.  The 
calculated values of traction and displacements on the over-prescribed boundary and the displacements at the inside 
observation points are used in the simulations of inverse analysis.  To simulate the effect of errors in the measured 
displacements, noise of the order of 0.1%, 1%, 5% and 100% was introduced in the calculated values. 

In the inverse analysis the displacements at the inside observation points, the boundary values of traction and 
displacement on the over-prescribed boundary of part of BC, displacement uy = 0 traction tx (= τ xy) = 0 on the rest of BC, 
together with traction tx (= σ x) = 0 and ty (= τ xy) = 0 on AB and CD were used.    
    
6. RESULTS OF NUMERICAL SIMULATION OF INVERSE BOUNDARY VALUE ANALYSES 
As an example Figure 3 shows the variation of square sum of residual in contact stress distribution with iterations for h = 
0.5, hin = 0.4, the total number of inside observations nin=6, and the number over-prescribed boundary values nover=4.      
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Figure 3: Variation of the square sum of residual in contact stress distribution with iterations 

(stress type:Hertzian, n=10, h=0.5, nin=6, hin=0.4, nover=4). 
 

The residual is evaluated between the actual and estimated contact stress distributions.  As can be seen in the figure, in the 
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first stage of iterations the residual in contact stress decreases with the number of iterations, then the residual increases with 
the number of iterations.  This behavior implies that the solution gets better in the first stage and then after certain number 
of iterations it gets worse.  There is an optimum number of the iterations.  The number of iterations of truncation can be 
regarded as a regularization parameter.   
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Figure 4: Variation of square sum of residual in observation values with
iterations (stress type:Hertzian, n=10, h=0.5, nin=6, hin=0.4, nover=4). 
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Figure 5: Variation of square sum of residual in observation equations with 
iterations (stress type:Hertzian, n=10, h=0.5, nin=6, hin=0.4, nover=4). 

 
To determine the optimum stopping number of iterations, the discrepancy principle applied in the ordinary 

observation space [20], and that applied in the observation equations [15] are used.  The calculated residual in observation 
values and observation equations are shown in Figures 4 and 5, respectively.  The residual in the observation values and 
that in the observation equations, which correspond to the noise level, are shown by symbols in the figures.  By taking the 
value of discrepancy corresponding to the noise level, the optimum stopping number of iterations can be estimated from 
the figures. 

From Figures 4 and 5 the stopping number of iterations estimated by the ordinary discrepancy principle applied in the 
observation space is smaller than that estimated by the discrepancy principle applied in the observation equations.  
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Figure 6: Contact stress distributions estimated by using discrepancy principle applied in observational 
space (stress type:Hertzian, n=10, h=0.5, nin=6, hin=0.4, nover=4).  
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Figure 7: Contact stress distributions estimated by using discrepancy principle applied in observation
equations (stress type:Hertzian, n=10, h=0.5, nin=6, hin=0.4, nover=4). 

 
 
 
 

Figures 6 and 7 show the estimated contact stress distributions for the number of iterations estimated using the 
discrepancy principle applied in the observation space and in the observations equations, respectively.  The estimated 
distributions are deteriorated with increase in the noise level.  The estimated contact stress distributions for the stopping 
number of iterations estimated using the discrepancy principle applied in the observation space is reasonable, while its peak 
value is lower than the actual.  The estimated contact stress distributions for the number of iterations estimated using the 
discrepancy principle applied in the observation equations agrees well with the actual one, and the peak value of the 
estimated distribution is close to the actual one, on the other hand fluctuation of the distribution is observed in the regions of 
x < 0.3 and x > 0.7, where no contact stress applies.  Non-positiveness of the contact stress may be effectively 
incorporated to obtain a better estimate.   
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 Figure 8: Contact stress distributions estimated by using discrepancy principle

applied in observational space (stress type:Hertzian, n=10, h=0.5, nin=9, hin=0.4, 
nover=1). 
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Figure 9:  Contact stress distributions estimated by using discrepancy principle applied in
observation equations (stress type:Hertzian, n=10, h=0.5, nin=9, hin=0.4, nover=1). 

 
 
 

Figures 8 and 9 show the estimated contact stress distributions for the number of iterations estimated using the 
discrepancy principle in observation space and observations equations, respectively, for the case of h=0.5, hin=0.4, nin=9, 
and nover=1.  It is seen that the contact stress distribution is reasonably estimated for this case also by the present alternating 
inverse analysis scheme. 
 
7. CONCLUSIONS 
Boundary values for a two-dimensional elastostatic body are estimated using the inside observations of displacements 
together with boundary observations.   Alternating boundary element inverse analysis scheme was developed for this 
situation.  The discrepancy principle applied in the observation space and in the observations equations were used to 
estimate the stopping number of iterations, which is regarded as a regularization parameter.  It was found that the 
alternating boundary element inverse analysis scheme was applicable for the estimation of boundary values from the inside 
and boundary observations. 
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